164 research outputs found

    Measurement of kinematic and nuclear dependence of R = σ_L/σ_T in deep inelastic electron scattering

    Get PDF
    We report results on a precision measurement of the ratio R=σ_L/σ_T in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q^2≤10 (GeV/c)^2. Our results show, for the first time, a clear falloff of R with increasing Q^2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences R_A-R_D and the cross section ratio σ^A/σ^D between Fe and Au nuclei and the deuteron. Our results for R_A-R_D are consistent with zero for all x, Q^2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σ^A/σ^D from all recent experiments, at all x, Q^2 values, are now in agreement

    Measurement of the Difference in R=σ_L/σ_T and of σ^A/σ^D in Deep-Inelastic e-D, e-Fe, and e-Au Scattering

    Get PDF
    We measured the differences in R=σ_L/σ_T and the cross-section ratio σA/σD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q^2≤5 (Gev/c)^2. Our results for R^A-R^D are consistent with zero for all x and Q^2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q^2, are now in agreement

    Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas

    Get PDF
    Two-dimensional electron gases (2DEGs) in SrTiO3_3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the dd-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3_3-based 2DEGs, and yield new microscopic insights on their functional properties.Comment: 10 pages including supplementary information, 4+4 figure

    Control of a two-dimensional electron gas on SrTiO3(111) by atomic oxygen

    Get PDF
    We report on the formation of a two-dimensional electron gas (2DEG) at the bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments reveal highly itinerant carriers with a 6-fold symmetric Fermi surface and strongly anisotropic effective masses. The electronic structure of the 2DEG is in good agreement with self-consistent tight-binding supercell calculations that incorporate a confinement potential due to surface band bending. We further demonstrate that alternate exposure of the surface to ultraviolet light and atomic oxygen allows tuning of the carrier density and the complete suppression of the 2DEG.Comment: 5 pages, 4 figure

    Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO2 thin films

    Full text link
    Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO2 films terminated by a (1 x 4) in-plane surface reconstruction. Employing photo-stimulated chemical surface doping we induce 2DELs with tunable carrier densities that are confined within a few TiO2 layers below the surface. Subsequent in-situ angle resolved photoemission experiments demonstrate that the (1 x 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. This causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential

    Collapse of the Mott gap and emergence of a nodal liquid in lightly doped Sr2_2IrO4_4

    Get PDF
    Superconductivity in underdoped cuprates emerges from an unusual electronic state characterised by nodal quasiparticles and an antinodal pseudogap. The relation between this state and superconductivity is intensely studied but remains controversial. The discrimination between competing theoretical models is hindered by a lack of electronic structure data from related doped Mott insulators. Here we report the doping evolution of the Heisenberg antiferromagnet Sr2_2IrO4_4, a close analogue to underdoped cuprates. We demonstrate that metallicity emerges from a rapid collapse of the Mott gap with doping, resulting in lens-like Fermi contours rather than disconnected Fermi arcs as observed in cuprates. Intriguingly though, the emerging electron liquid shows nodal quasiparticles with an antinodal pseudogap and thus bares strong similarities with underdoped cuprates. We conclude that anisotropic pseudogaps are a generic property of two-dimensional doped Mott insulators rather than a unique hallmark of cuprate high-temperature superconductivity

    Observation of out-of-plane spin texture in a SrTiO3 (111) two-dimensional electron gas

    Full text link
    We explore the second order bilinear magnetoelectric resistance (BMER) effect in the d-electron-based two-dimensional electron gas (2DEG) at the SrTiO3 (111) surface. We find an evidence of a spin-split band structure with the archetypal spin-momentum locking of the Rashba effect for the in-plane component. Under an out-of-plane magnetic field, we find a BMER signal that breaks the six-fold symmetry of the electronic dispersion, which is a fingerprint for the presence of a momentum dependent out-of-plane spin component. Relativistic electronic structure calculations reproduce this spin-texture and indicate that the out-of-plane component is a ubiquitous property of oxide 2DEGs arising from strong crystal field effects. We further show that the BMER response of the SrTiO3 (111) 2DEG is tunable and unexpectedly large.Comment: 16 pages, 4 figure

    Absence of giant spin splitting in the two-dimensional electron liquid at the surface of SrTiO3 (001)

    Get PDF
    We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nature Mat. 13, 1085 (2014)]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.PostprintPeer reviewe

    Observation of Large Topologically Trivial Fermi-Arcs in the Candidate Type-II Weyl Semimetal WTe2

    Full text link
    We report angle-resolved photoemission experiments resolving the distinct electronic structure of the inequivalent top and bottom (001) surfaces of WTe2. On both surfaces, we identify a surface state that forms a large Fermi-arc emerging out of the bulk electron pocket. Using surface electronic structure calculations, we show that these Fermi arcs are topologically trivial and that their existence is independent of the presence of type-II Weyl points in the bulk band structure. This implies that the observation of surface Fermi arcs alone does not allow the identification of WTe2 as a topological Weyl semimetal. We further use the identification of the two different surfaces to clarify the number of Fermi surface sheets in WTe2.Comment: Accepted in Physical Review B Rapid Communication on 16 Aug 201
    • …
    corecore